Chemical constituents from the fruit of Schisandra Chinensis
Yunling Xu, Yuji Wang, Shiping Jiang, Tingting Cai, Nannan Wang, Xia Liu, Wanping Zhu*    
Zhejiang Institute of Traditional Chinese Medicine, Hangzhou 310007, China 
 
 
Abstract: A new18-norschiartane bisnortriterpenoid, 12-angeloyl wuweizidilactone I(1)and nine known compounds, wuweizidilactone I(2),wuweizidilactone G (3), deoxychizandrin (4),sasanquin(5), orcinol-O-β-D-glucopyranoside(6),okanin-4-methyl ether-3'-O-β-D-glucopyranoside(7), evemic acid(8), juglansol A(9) and 2-acetoxybenzyl benzoate (10), were isolated from the fruits of SchisandraChinensis.Their structures were established by a combination of spectroscopic data analysis in addition to comparison with literature data. Compound 1 was new, and compounds 610 were isolated from Schisandrae Chinensisfor the first time.                       
Keywords: Schisandrae Chinensis; Wuweizidilactone; Structural identification 
CLC number: R284                Document code: A                 Article ID: 10031057(2020)748007
 
 
1. Introduction
As a climbing plant, Schisandra chinensis (Turcz.) Baiil. (Magnoliaceae family) is extensively distributed in the region of the northeastern China, Korea, Japan and Russian Far East, and its fruits are often considered to be an example of a superior drug used as an astringent tonic for more than 2000 years in China[1,2]. Many types of compounds have been isolated from S. chinensis,including nortriterpenes, lignans, sesquiterpenes and phenolicacids. Some of them, especially dibenzocyclooctadiene lignans, have diverse liver healing properties[3,4]. In the past decades, many efforts have been directed towards discovering the highly oxygenated nortriterpenes from the Schisandraceae family, which possess unprecedentedcarbon skeletons[5]. In our research, a new nortriterpenoid (18-norschiartane), together with two known nortriterpenoidwuweizidilactone I (2), wuweizidilactone G (3), and seven known hepatoprotective dibenzocyclooctadiene lignans, deoxychizandrin (4), sasanquin (5), orcinol-O-β-D-glucopyranoside (6), okanin-4-methyl ether-3'-O-β-D-glucopyranoside (7) , evemic acid (8), juglansol A (9) and 2-acetoxybenzyl benzoate (10), were isolated from the fruit of S. chinensis (Fig. 1). Herein, we described the isolation and structural elucidation of these compounds.  
 
 
Figure 1. Chemical structures of compounds 110. 
2. Experimental 
2.1. General procedures
NMR spectra were obtained on Bruker AV600 MHz instrument (Bruker, Rheinstetten, Switzerland). Chemicalshifts (δ) of H and C were recorded in ppm using TMS as an internal standard. HR-ESI-MS spectra wereobtained on a Q-TOF Ultima Global GAA076 LC mass spectrometer. IR spectra were recorded on a Bruker Vertex 70 FT-IR spectrophotometer. Column silica gel (300–400 mesh, Qingdao Haiyang Chemical Inc., Qingdao, China), octadecylsilyl silica gel (50 μm, YMC) and Sephadex LH-20 gel (40–70 μm, GE Healthcare Bio-Science AB, Uppsala, Sweden) were used for columnchromatography (CC). Precoated silica gel plates (Yantai Chemical Group Co., G60, F254) and reversed silica gel 60 F254s plate (20 cm×20 cm, Merck KGaA, Darmstadt, Germany) were used for thin layer chromatography (TLC).
2.2. Plant materials
The fruits of Schisandra chinensis were purchased from Liaoning Medicinal Material Corporation (Shenyang, China) in September 2017 and identified by Prof. Tan Jingling of Hubei Institute for Drug Control.
2.3. Extraction and isolation
The fruits of S. chinensis (5 kg) were extracted with 70% EtOH for three times, with 1 h for each extraction.The extract was concentrated in vacuo to yield a residue (870 g), 850 g of which was suspended in water and successively partitioned with petroleum ether, EtOAc and n-butanol. The solvent was evaporated under a vacuum to afford PE extract (139 g), EtOAc extract (255 g) andn-butanol extract (493 g). The EtOAc fraction (255 g) was subjected to silica gel CC (5.2 kg, 300–400 mesh), and eluted with a gradient system of CH2Cl2–MeOH (100:1→0:100, v/v), yielding fractions 1→11. Fr.4 (4.3 g) was further purified with repeated CC (silica gel, 300–400 mesh) and eluted with CH2Cl2–EtOAc (10:1→1:10, v/v) and Sephadex LH-20 (CH2Cl2–MeOH,1:1, v/v) to give compound 1 (13 mg), compound 2 (17 mg), compound 3 (19 mg) and compound 4 (43 mg). Fr.9 (3.2 g) was subjected on repeated CC eluted with CH2Cl2–Me2CO (10:1→1:10, v/v), ODS-C18 eluted with MeOH–H2O (0:100→100:0, v/v) and Sephadex LH-20 (CH2Cl2–MeOH, 1:1, v/v) to yield 5 (31 mg), 6 (15 mg),7 (14 mg), 8 (19 mg), 9 (10 mg) and 10 (11 mg).
3. Identification
3.1. 12-Angeloyl wuweizidilactone I (1)
Compound 1 was obtained as amorphous white powder, HR-ESI-TOF MS analysis afforded the [M+H]+ ion at m/z 697.4266 (calcd for 697.4274 C38H49O12), giving the molecular formula of C38H48O12. The IR spectrum of 1 indicated strong absorption bands for OH (3459 cm1) and carbonyl (1724, 1781 cm1) functional groups.
The 1H and 13CNMR spectra revealed that 1 contained38 carbons, including 8 methyls, 5 methylenes, 13 methinesand 12 quaternary carbons. These observationssuggested that compound 1 was likely to contain 8 rings to satisfy the observed degrees of unsaturation and had a highly oxygenated nortriterpenoid with a schisanartane skeleton[6]. 
The spectra of 1 (Table 1) resembled those of wuweizidilactone I except for the presence of an olefin protona at δH 5.44 (s) and two methyl groups attached to ene carbon with δH 2.06 (s) and 2.02 (m), attributed to angeloyl group in 1. Moreover, the carboxyl group at δC170.6, 146.3, 139.0, 21.1 and 15.6 in the spectrum of 13C NMR suggested that 1 had an additional angeloyl group. This assumption was subsequently confirmed byconducting a set of 2D-NMR spectroscopic experiments (including 1H-1H COSY, HSQC and HMBC) that provided data for the unequivocal assignment of all proton and carbon signals (Table 1). The planar structure of 1 was constructed by analyzing the 2D-NMR data obtained, and these results were compared with the NMR data obtained for wuweizidilactone I[6,7]. The closesimilarities of the NMR spectroscopic data for rings A–C and E–H with those of wuweizidilactone I suggested that 1 had similar substructures, except for the differences in the chemical shifts at C-13 of ring D. The substructure of ring D was revealed by the 1H-1H COSY spin system of H2-11/H-12 and HMBC correlations (Fig. 2) to be H2-11 (δH 2.22) with C-9 (δC 75.0), C-12 (δC 70.2), C-13 (δC 90.5) and C-19 (δC 45.9), and of H-17 (δH 2.89) with C-12, coupled with the upfield shifts of H-12 at δH 4.23 ppm. The presence of an angeloyl group at C-7 was evident from the HMBC correlation of H-7 (δH 5.65) with carbonyl carbon C-1' (δC 166.1), and the other angeloyl group at C-12 was evident from the HMBC correlation of H-12 (δH 5.64) with carbonyl carbon C-1'' (δC 170.6). Therefore, compound 1 was determined to be 12-angeloyl wuweizidilactone I. 
 
 
Table 1. NMR data for compound 1 (600/150 MHz, C5D5N).
 
 
  
 
Figure 2. The key COSY and HMBC correlations of 1.  
 
3.2. Wuweizidilactone I (2)
Amorphous white powder (MeOH); ESI-MS: m/z 637.27 [M+Na]+; 1H NMR (600 MHz, pyridine-d5) δ: 7.18 (1H, br s, H-24), 5.84 (1H, m, H-3'), 5.65 (1H, d, J =8.4 Hz, H-7), 4.99 (1H, br s, H-23), 4.31 (1H, s, H-1), 4.20 (2H, d, J =8.4 Hz, H-12), 3.90 (1H, d, J =8.6 Hz, H-22), 3.72 (1H, s, H-15), 3.05 (1H, dd, J1=5.4 Hz, J2 =19.2 Hz, H-2b), 2.94 (1H, s, H-17), 2.92 (1H, s, H-8), 2.76 (1H, d, J =19.2 Hz, H-2a), 2.66 (1H, s, H-20), 2.54 (1H, dd, J1=4.2 Hz, J2=12.6 Hz, H-5), 2.32 (2H, s, H-19), 2.26 (2H, d, J =8.4 Hz, H-11), 2.06 (1H, s, H-4'), 2.01 (1H, d, J =7.2 Hz, H-5'), 1.96 (1H, m, H-6a), 1.75 (1H, br s, H-27), 1.66 (1H, m, H-6b), 1.19 (1H, s, H-30), 0.99 (1H, s, H-29), 0.86 (1H, d, J =6.8 Hz, H-21); 13C NMR (150 MHz, pyridine-d5) δ: 174.9 (C-3), 174.3 (C-26), 166.0 (C-1'), 146.5 (C-24), 140.0 (C-3'), 130.5 (C-25), 127.6 (C-2'), 97.9 (C-10), 92.3 (C-13), 84.2 (C-22), 83.8 (C-4), 81.5 (C-1), 80.9 (C-23), 78.3 (C-9), 70.2 (C-12), 69.9 (C-7), 69.8 (C-14), 54.8 (C-15), 54.2 (C-5), 46.4 (C-8),45.6 (C-19), 43.1 (C-17), 42.4 (C-11), 36.3 (C-20), 35.3 (C-2), 30.3 (C-6), 27.9 (C-16), 27.7 (C-30), 21.2 (C-29), 20.6 (C-4'), 15.6 (C-5'), 11.4 (C-21), 10.5 (C-27). These data were in accordance with those of Wuweizidilactone I[7].
3.3. Wuweizidilactone G (3) 
Amorphous white powder (MeOH); ESI-MS: m/z 695.27 [M+Na]+; 1H NMR (600 MHz, pyridine-d5) δ: 5.68 (1H, d, J = 7.8 Hz, H-7b), 5.29 (2H, d, J = 8.4 Hz, H-12b), 4.79 (1H, br s, H-23), 4.38 (1H, br s, H-24), 4.37 (1H, s, H-1), 4.01 (1H, d, J = 8.4 Hz, H-22b), 3.87 (1H, s, H-15), 3.15 (1H, dd, J1=5.4 Hz, J2= 19.2 Hz, H-2b), 2.91 (1H, s, H-8), 2.80 (1H, d, J = 19.2 Hz, H-2a), 2.61 (1H, dd, J1= 4.2 Hz, J2= 12.6 Hz, H-5), 2.76 (1H, m, H-20), 2.59 (1H, m, H-17), 2.42 (1H, d, J = 16.2Hz, H-11b), 2.24 (2H, d, J = 16.8 Hz, H-19), 2.12 (1H, d, J = 8.4 Hz, H-11a), 2.06 (1H, m, H-6a), 2.02 (1H, m, H-16a), 1.72 (1H, m, H-16b), 1.69 (1H, m, H-6b), 1.65 (1H, br s, H-27), 1.21 (1H, s, H-30), 1.09 (1H, s, H-29), 0.85 (1H, d, J = 6.8 Hz, H-21); 13C NMR (150 MHz, MeOH-d4) δ: 174.7 (C-3), 173.4 (C-26), 170.5 (C-1''), 166.3 (C-1'), 139.6 (C-3'), 127.8 (C-2'), 97.9 (C-10), 91.3 (C-13), 85.2 (C-22), 84.1 (C-4), 82.0 (C-1), 75.9 (C-23), 75.1 (C-9), 70.1 (C-12), 69.9 (C-7), 69.8 (C-14), 62.5 (C-24), 56.5 (C-25), 53.9 (C-5), 46.4 (C-8), 42.1 (C-11), 55.3 (C-15), 46.2 (C-19), 43.2 (C-17), 35.9 (C-20), 35.5 (C-2), 31.0 (C-6), 28.5 (C-30), 26.9 (C-16), 22.2 (C-29), 21.5 (C-2''), 21.1 (C-4'), 15.9 (C-5'), 11.5 (C-27), 10.4 (C-21).Its data were in good accordance with those of Wuweizidilactone G[8].
3.4. Deoxychizandrin (4)
Colorless crystals (MeOH); ESI-MS: m/z 417 [M+H]+;1H NMR (600 MHz, CDCl3) δ: 6.56 (2H, s, H-6, 6′), 3.58 (3H, s, -OCH3), 3.59 (3H, s, -OCH3), 3.87 (3H, s, -OCH3), 3.88 (3H, s, -OCH3), 3.90 (3H, s, -OCH3), 3.91 (3H, s, -OCH3), 2.38 (2H, m, H2-7), 2.20 (2H, m, H2-7′), 1.61 (2H, m, H-8, 8′), 1.02 (6H, d, J = 7.2 Hz, 2×CH3); 13C NMR (150 MHz, CDCl3) δ: 152.9 (C-5, 5′), 151.1 (C-3, 3′), 139.9 (C-4, 4′), 137.9 (C-2, 2′), 122.5 (C-1, 1′), 107.5 (C-6, 6′), 61.1, 60.6, 55.9 (3×OCH3), 42.8 (C-7, 7′), 40.8 (C-8, 8′), 23.7 (C-9, 9′). All the above data were in good agreement with those of deoxychizandrin[9] 
3.5. Erugenyl-O-β-D-apiofuranosyl-(1''-6')-O-β-D-glucopyranoside (5)
Amorphous yellow powder (MeOH); ESI-MS: m/z 459 [M+H]+; 1H NMR (600 MHz, MeOH-d4) δ: 7.09 (1H, d, J = 8.4 Hz, H-6), 6.85 (1H, d, J = 1.8 Hz, H-3), 6.78 (1H, dd, J1=8.4 Hz, J2= 1.8 Hz, H-5), 5.98 (1H, dd, J1= 17.4 Hz, J2= 6.6 Hz, H-8), 5.13 (1H, d, J =1.8 Hz, 9-Ha), 5.07 (1H, J =1.8 Hz, 9-Hb), 3.37 (2H, m, H-7), 3.86 (3H, s, -OCH3); glucose: 4.89 (1H, d, J =7.2 Hz, H-1'), 3.43–3.52 (4H, m, H-2',3',4',5'), 3.77 (1H, m, H-6'), 4.01 (1H, m, H-6'), apiofu-ranose: 4.99 (1H, d, J =2.4 Hz, H-1''), 3.95 (1H, d, J = 2.4 Hz, H-2''), 3.79 (1H, m, H-4''a), 3.59 (2H, s, H-5''); 13C NMR(150 MHz, MeOH-d4) δ: 150.6 (C-2), 138.9 (C-8), 136.4 (C-4), 122.1 (C-5), 118.3 (C-3), 115.9 (C-9), 114.1 (C-6), 106.4 (C-1), 56.7 (C-OCH3), 40.7 (C-7), sugar-1: 103.1 (C-1'), 74.9 (C-2'), 78.0 (C-3'), 71.5 (C-4'), 77.7 (C-5'), 68.6 (C-6'), sugar-2: 110.9 (C-1''), 76.9 (C-2''), 80.5 (C-3''), 74.9 (C-4''), 65.6 (C-5''). Its spectral data were identical with those of sasanquin reported in literature[10].
3.6. Orcinol-O-β-D-glucopyranoside (6)
Amorphous white powder (MeOH); ESI-MS: m/z 287 [M+H]+; 1H NMR (600 MHz, CDCl3) δ: 12.39 (1H, s, -COOH), 9.59 (1H, s, 4'-OH), 9.11 (1H, s, 3'-OH), 7.56 (1H, d, J = 16.8 Hz, H-7'), 7.15 (1H, d, J = 2.4 Hz, H-2'), 7.02 (1H, dd, J1= 2.4 Hz, J2=8.4 Hz, H-6'), 6.82 (1H, d, J = 8.4 Hz, H-6'), 6.39 (1H, d, J =16.2 Hz, H-8'), 5.57 (1H, s, 1-OH), 5.07 (1H, s, 4-OH), 5.01 (1H, m, H-3), 4.91 (1H, s, 5-OH), 4.03 (1H, m, H-4), 3.63 (1H, m, H-5), 2.28–1.66 (4H, m, H-2, 6); 13C NMR (150 MHz,CDCl3) δ: 180.6 (C-7), 169.1 (C-9'), 148.4 (C-3'), 145.9 (C-7'), 145.3 (C-4'), 126.6 (C-1'), 123.4 (C-6'), 116.9 (C-5'), 116.1 (C-8'), 114.3 (C-2'), 76.8 (C-1), 71.8 (C-5), 71.0 (C-3), 69.6 (C-4), 38.9 (C-2), 38.0 (C-6). Its spectral data were identical with those of orcinol-O-β-D-glucopyranosidereported in literature[11].
3.7. Okanin-4-methyl ether-3'-O-β-D-glucopyranoside (7)
Amorphous yellow powder (MeOH); ESI-MS: m/z 465 [M+H]+; 1H NMR (600 MHz, MeOH-d4) δ: 7.88 (1H, d, J = 7.2 Hz, H-6'), 7.65 (1H, d, J = 16.8 Hz, H-8), 7.32 (1H, d, J = 16.8 Hz, H-7), 7.22 (1H, d, J = 2.4 Hz, H-2), 7.16 (1H, dd, J1= 7.8 Hz, J2= 2.4 Hz, H-6), 6.98 (1H, d, J = 8.4 Hz, H-5), 6.52 (1H, d, J = 7.8 Hz, H-5'), 4.91 (1H, d, J = 7.2 Hz, H-1''), 3.91 (3H, s, -OCH3), 3.82–3.16 (6H, m, H-2''–6''); 13C NMR (150 MHz, MeOH-d4) δ: 194.1 (C-9), 159.1 (C-2'), 158.4 (C-4'), 152.9 (C-4), 148.3 (C-3), 145.5 (C-7), 132.6 (C-3'), 130.3 (C-1), 127.9 (C-6'), 123.4 (C-6), 121.3 (C-8), 116.3 (C-2), 115.8 (C-1'), 113.1 (C-5), 110.3 (C-5'), 105.0 (C-1''), 77.8 (C-3''), 76.9 (C-5''), 74.0 (C-2''), 70.6 (C-4''), 60.9 (C-6''), 56.0 (-OCH3). Its spectral data were identical with those of aviculin reported in literature[12].
3.8.Evemic acid (8)
Amorphous white powder (MeOH); ESI-MS: m/z 333 [M+H]+; 1H NMR (600 MHz, MeOH-d4) δ: 10.69 (2H, s, J = 8.4 Hz, 2,2'-OH), 6.95 (1H, d, J = 2.4 Hz, H-3'), 6.68 (1H, d, J =1.8 Hz, H-5'), 6.56 (1H, d, J = 2.4 Hz, H-3), 6.50 (1H, d, J = 2.4 Hz, H-5), 3.77 (3H, s, 9-CH3), 2.37 (3H, s, 8'-CH3), 2.31 (3H, s, 8-CH3); 13C NMR (150 MHz, MeOH-d4) δ: 172.6 (C-7'), 169.1 (C-7), 164.4 (C-4), 159.9 (C-2), 157.3 (C-2'), 152.6 (C-4'), 140.4 (C-6), 138.9 (C-6'), 116.7 (C-5'), 114.9 (C-1'), 111.0 (C-1), 109.8 (C-5), 108.4 (C-3'), 100.6 (C-3), 55.9 (C-9), 23.4 (C-8'), 23.0 (C-8). Its spectral data were identical with those of evemic acid reported in literature[13]. 
3.9.Juglansol A (9) 
Colorless oil (MeOH); ESI-MS: m/z 427.14 [M+Na]+ ;1H NMR (600 MHz, MeOH-d4) δ: 7.49 (1H, d, J = 1.8 Hz, H-2), 7.32 (1H, br s, H-6'), 7.04 (1H, br s, H-2'), 6.99 (1H, d, J = 8.4 Hz, H-5), 6.36 (1H, dd, J1= 8.4 Hz,J2=1.8 Hz, H-6), 4.75 (1H, d, J = 6.6 Hz, H-7'), 4.71 (2H, s, H-9), 4.05 (3H, s, 3-OCH3), 4.02 (3H, s, 3'-OCH3) , 3.78 (1H, m, H-8'), 3.58 (1H, dd, J1=12.6 Hz,J2=4.2 Hz, H-9'), 3.53 (3H, s, H-10), 3.48 (1H, dd, J1=12.6 Hz, J2=4.2 Hz, H-9'); 13C NMR (150 MHz, MeOH-d4) δ: 157.1 (C-7), 149.6 (C-3), 149.3 (C-4), 146.5 (C-3'), 143.9 (C-4'), 139.9 (C-1'),132.8 (C-5'), 123.4 (C-1), 122.1 (C-6), 116.9 (C-5), 112.5 (C-8), 112.0 (C-2), 111.4 (C-6'), 107.2 (C-2'), 77.9 (C-8'), 76.3 (C-7'), 65.9 (C-9), 64.6 (C-9'), 58.6 (C-10), 57.1 (3'-OCH3), 56.9 (3-OCH3). Its spectral data were in good agreement with those of Juglansol A[14].
3.10. 2-Acetoxybenzyl benzoate (10)
Colorless solid (CH2Cl2–MeOH); 1H NMR (600 MHz, MeOH-d4) δ: 8.11 (2H, dd, J1 = 12.6 Hz, J2 = 4.2 Hz, H-2', 6'), 7.61 (1H, t, J = 7.4 Hz, H-4'), 7.56 (1H, dd, J1= 7.2 Hz, J2= 1.8 Hz, H-3), 7.48 (2H, t, J = 7.8 Hz, H-3', 5'), 7.44 (1H, t, J = 8.4 Hz, H-5), 7.34 (1H, dd, J1 = 7.8 Hz, J2 = 8.4 Hz, H-4), 7.18 (1H, dd, J1 = 7.2 Hz, J2 = 1.2 Hz, H-6), 5.35 (2H, s, H-7), 2.34(3H, s, H-2''); 13C NMR (150 MHz, MeOH-d4) δ: 169.5 (C-1''), 166.4 (C-7'), 149.3 (C-2), 133.4 (C-4'), 130.5 (C-1'), 129.7 (C-2', 6'), 129.9 (C-1), 129.8 (C-4), 128.5 (C-3', 5'), 128.1 (C-6), 126.3 (C-3), 122.9 (C-5), 62.0 (C-7), 20.7 (C-2''). All the above data were in accordance with those of 2-acetoxybenzyl benzoate[15].
References
[1] Lu, Y.; Chen, D.F. Analysis of Schisandra chinensis and Schisandra sphenanthera. J. Chromatogr. A.2009, 1216, 1980–1990.
[2] Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008, 118, 183–212.
[3] Smejkal, K.; Slapetová, T.; Krmen?ík, P.; Babula, P.; Dall’Acqua, S.; Innocenti, G.; Van?o, J.; Casarin, E.; Carrara, M.; Kalvarová, K.; Dvorská, M.; Slanina, J.; Kramá?ová, E.; Julínek, O.; Urbanová, M. Evaluation of cytotoxic activity of Schisandrachinensis lignans. Planta Med.2010, 76, 1672–1677.
[4] Chen, Y.C.; Liaw, C.C.; Cheng, Y.B.; Lin Y.C.; Chen, C.H.;Huang, Y.T.; Liou, S.S.; Chen, S.Y.; Chien, C.T.; Lee, G.C.; Shen, Y.C. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera. Bioorg. Med. Chem. Lett. 2013, 23, 880–885.
[5] Gao, X.; Meng X.J.; Li, J.H.; Tong H.B. Isolation, characterization and hypoglycemic activity of an acid polysaccharide isolated from Schisandra chinensis (turcz.) baill. Lett. Org. Chem. 2009, 6, 428–433.
[6] Huang, S.X.; Li, R.T.; Liu, J.P.; Lu,Y.; Chang, Y.; Lei, C.;Xiao,W.L.; Yang, L.B.; Zheng, Q.T.; Sun, H.D. Isolation and characterization of biogenetically related highly oxygenated nortriterpenoids from Schisandra chinensis. Org. Lett. 2007, 9, 2079–2082.
[7] Xue, Y.B.; Zhang, Y.L.; Yang, J.H.; Du, X.; Pu, J.X.; Zhao, W.; Li, X.N.; Xiao, W.L.; Sun, H.D. Nortriterpenoidsand lignans from the fruit of Schisandra chinensis. Chem. Pharm. Bull. 2010, 58, 1606–1611.
[8] Huang, S.X.; Han, Q.B.; Lei, C.; Pu, J.X.; Xiao, W.L.; Yu, J.L.; Yang, L.M.; Xu, H.X.; Zheng, Y.T.; Sun, H.D. Isolation and characterization of miscellaneous terpenoids ofSchisandra chinensis. Tetrahedron. 2008, 64, 4260–4267. 
[9] Wang, H.J.; Chen, Y.Y. Studies of lignans from Schisandrarubriflora rhed et wils. Acta Pharm. Sin.1985, 20, 832–841.
[10] Wang, X.Y.; Chen, G.R.; Deng, Z.Y.; Zhao, J.; Ge, J.F.; Li, N.; Chen, F.H. Chemical constituents from Bidens bipinnata. China J. Chin. Mater. Med.2014, 39, 1838–1844.
[11] Hu, H.B.; Fan, J. A new acylated stilbene glycoside from Acanthopanax brachypus. Bull. Korean Chem. Soc.2009, 30, 703–706.
[12] D’Agostino, M.; de Feo, V.; de Simone, F.; Pizza, C. Three chalcones from Seneciopseudotites. Phytochemistry.1991, 30, 2440–2441.
[13] Narui, T.K.; Sawada, K.; Takatsuki, S.; Okuyama, T.; Culberson, C.F.; Culberson, W.L.; Shibata, S. NMR assignments of depsides and tridepsides of the lichen family Umbilicariaceae. Phytochemistry.1998, 48, 815–822.
[14] Zhang, X.N.; Bai, M.; Cheng, Z.Y.; Yu, Z.G.; Huang, X.X.Cytotoxic lignans from the barks of Juglans mandshurica. J. Asian. Nat. Prod. Res. 2018, 20, 494–499.
[15] Ramjith, U.S.; Ayda C.; Navneeth, K.M.; Sameer. P.A.; Smrithi, R. Molecular docking study of aspirin and aspirin derivatives. IOSRJ. Appl. Chem. 2013, 3, 24–30.
 
 
 
北五味子化学成分的研究
徐云玲, 王昱霁, 江石平, 蔡婷婷, 王楠楠, 刘霞, 朱婉萍*
浙江省中医药研究院, 浙江 杭州 100029      
摘要: 对北五味子的化学成分进行研究, 分离得到10个化合物。通过波谱分析技术(1H NMR13C NMR)及比对文献资料的方法进行结构鉴定, 10个化合物分别为12-当归酰基-五味子二内酯I (1)五味子二内酯I (2)五味子二内酯G (3)去氧五味子(4)sasanquin (5)地衣酚-O-β-D-吡喃葡萄糖苷(6)奥卡宁-4-甲基醚-3'-O-β-D-吡喃葡萄糖苷(7)扁枝衣二酸(8)juglansol A (9)苯甲酸-2-乙酰氧基苄酯(10)。化合物1为新化合物, 化合物610为首次从五味子中分离得到。 
关键词: 五味子; 降三萜类; 结构鉴定
 
 
 
Received: 2020-04-24; Revised: 2020-05-11; Accepted: 2020-05-18.
*Corresponding author. Tel.: +86-571-88849087, E-mail: xu335629515@163.com          
 
 
        
知识共享许可协议
本作品采用知识共享署名-非商业性使用 4.0 国际许可协议进行许可。