Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (5): 351-359.DOI: 10.5246/jcps.2023.05.030
• Original articles • Previous Articles Next Articles
Mengya Wang1, Kuanyou Zhang2, Xin Chen1, Hao Fu1,*(), Shouchun Peng3,*(
)
Received:
2022-11-23
Revised:
2022-12-04
Accepted:
2023-01-15
Online:
2023-06-02
Published:
2023-06-02
Contact:
Hao Fu, Shouchun Peng
Supporting:
Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359.
[1] |
Barnett, R. Systemic lupus erythematosus. Lancet. 2016, 387, 1711.
|
[2] |
Chen, W.W.; Xiao, X.L.; Su, L.; Su, X.; Xia, J. Compound Shengdi Mixture from TLR-NF- κ B pathway regulates Th17/Treg balance in MRL/lpr mice. Chin. J. Tradit. Chin. Med. 2020, 10, 5270–5273.
|
[3] |
Zhu, Y.L.; Wu, F. Overview of TCM syndrome types and changes of systemic lupus erythematosus. Chin. J. Tradit. Chin. Med. 2018, 07, 2973–2975.
|
[4] |
Jiang, Z.; Tang, F.; Ma, W.K.; Lan, W.Y.; Fan, M.; Cai, X. Meta analysis of the clinical efficacy of Rhinoceros horn Rehmannia glutinosa decoction combined with anti rheumatic drugs in the treatment of heat toxic and intense systemic lupus erythematosus. J. Guizhou Univ. Tradit. Chin. Med. 2021, 03, 81–87.
|
[5] |
Zhou, G.W.; Chen, Y.H.; Xia, P.; Gao, K.; Chen, J.M.; Guo, F. Study on the mechanism of Langchuangjing traditional Chinese medicine granules in treating systemic lupus erythematosus based on network pharmacology. Chin. J. Tradit. Chin. Med. 2020, 10, 122–127.
|
[6] |
Fei, X.J.; Zhang, X.; Wang, Q.; Li, J.B.; Shen, H.; Wang, X.Y.; Liu, H.Q.; Tao, W.W. Xijiao Dihuang Decoction alleviates ischemic brain injury in MCAO rats by regulating inflammation, neurogenesis, and angiogenesis. Evid. Based Complement. Altern. Med. 2018, 2018, 5945128.
|
[7] |
Liu, J.; Pei, T.; Mu, J.; Zheng, C.; Chen, X.; Huang, C.; Fu, Y.; Liang, Z.; Wang, Y. Systems Pharmacology Uncovers the Multiple Mechanisms of Rhinoceros horn Rehmannia glutinosa Decoction for the Treatment of Viral Hemorrhagic Fever. Evid. Based Complement. Altern. Med. 2016, 06, 9025036.
|
[8] |
Huang, D.Y. Effect of Rhinoceros horn Rehmannia glutinosa Decoction on inflammatory factors and immunoglobulin in patients with systemic lupus erythematosus skin damage. Modern Med. Health Res. Elect. J. 2020, 08, 71–73.
|
[9] |
Wang, F.S. Clinical efficacy of Rhinoceros horn Rehmannia glutinosa decoction combined with small dose of corticosteroids in the treatment of heat toxic and burning systemic lupus erythematosus. J. Pract. Chin. Med. 2021, 04, 100–102.
|
[10] |
Zhou, X.G.; Li, H.W.; Wu, J.L. Effect of quercetin on LPE like mouse model induced by hypoglycane. Chin. J. Hospital Pharm. 2016, 21, 1869–1872.
|
[11] |
Cheng, L.Y.; Tu, L.L.; Shi, H. p38MAPK’s effect on chronic prostatitis pain and the intervention of quercetin. China Modern Appl. Pharm. 2016, 08, 984–988.
|
[12] |
Lin, F. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. Int. Immunopharmacol. 2015, 28, 859–865.
|
[13] |
Ma, S.; Jin, Y.; Shi, Y.; Zhang, Y.D. Study on the effect of Hongban Qingtang on sIL-2R level and prognosis of patients with systemic lupus erythematosus. Sichuan Tradit. Chin. Med. 2019, 08, 141–143.
|
[14] |
Kordulewska, N.K.; Cieślińska, A.; Fiedorowicz, E.; Jarmołowska, B.; Kostyra, E. High expression of IL-1RI and EP2 receptors in the IL-1β/COX-2 pathway, and a new alternative to non-steroidal drugs—osthole in inhibition COX-2. Int. J. Mol. Sci. 2019, 20, 186.
|
[15] |
Chen, S.; Wang, Y.; Qin, H.; Lin, J.; Xie, L.; Chen, S.; Liang, J.; Xu, J. Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4+ T cells. Lupus. 2019, 28, 510–519.
|
[16] |
Ruchakorn, N.; Ngamjanyaporn, P.; Suangtamai, T.; Kafaksom, T.; Polpanumas, C.; Petpisit, V.; Pisitkun, T.; Pisitkun, P. Performance of cytokine models in predicting SLE activity. Arthritis Res. Ther. 2019, 21, 287.
|
[17] |
Yu, Y.; Liu, L.; Hu, L.L.; Yu, L.L.; Li, J.P.; Rao, J.A.; Zhu, L.J.; Liang, Q.; Zhang, R.W.; Bao, H.H.; Cheng, X.S. Potential therapeutic target genes for systemic lupus erythematosus: a bioinformatics analysis. Bioengineered. 2021, 12, 2810–2819.
|
[18] |
Oikonomidou, O.; Vlachoyiannopoulos, P.G.; Kominakis, A.; Kalofoutis, A.; Moutsopoulos, H.M.; Moutsatsou, P. Glucocorticoid receptor, nuclear factor kappaB, activator protein-1 and C-Jun N-terminal kinase in systemic lupus erythematosus patients. Neuroimmunomodulation. 2006, 13, 194–204.
|
[19] |
Schonthaler, H.B.; Guinea-Viniegra, J.; Wagner, E.F. Targeting inflammation by modulating the Jun/AP-1 pathway. Transl. Psychiatry. 2011, 70, i109–i112.
|
[20] |
Yang, Z.; Xie, R.F.; Zhong, M.H.; Xie, G.Q.; Fan, Y.S.; Zhao, T. Potential molecular mechanisms of Zhibai Dihuang wan in systemic lupus erythematosus based on network biology. Evid. Based Complement. Altern. Med. 2020, 2020, 7842179.
|
[21] |
Teng, Z.; Lin, X.; Luan, C.; Sun, Y.; Li, X. The high expression of miR-564 in patients with systemic lupus erythematosus promotes differentiation and maturation of DC cells by negatively regulating TP53 expression in vitro. Lupus. 2021, 30, 1469–1480.
|
[22] |
Zhou, Y.; Li, Z. Systemic lupus erythematosus and infection. Chin. J. Clin. (Electronic Edition). 2016, 21, 3271–3275.
|
[23] |
Gong, X.B.; Li, H.; Li, SW.; Wang, B.S.; Yao, M.M. Network Pharmacological Analysis of Artemisia Annua in Treating Systemic Lupus Erythematosus. J. Clin. Chin. Med. 2021, 06, 1112–1118.
|
[24] |
Li, J.; Wang, X.; Zhang, F.; Yin, H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol. Ther. 2013, 138, 441–451.
|
[1] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[2] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[3] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[4] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[5] | Weiping Zhao, Qi Ge, Zijun Ding, Leizhi Pan, Ziqing Gu, Yang Liu, Hua Cai. Network pharmacology and metabolomics-based detection of the potential pharmacological effects of the active components in Chrysanthemum morifolium 'Chuju' [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 412-428. |
[6] | Yinglin Yang, Shanshan Zhang, Man Liu, Dongni Liu, Yuehua Wang, Guanhua Du. Network pharmacological analysis of Xiao-Xu-Ming decoction against ischemic stroke and verification of its mechanism of anti-inflammation and neurovascular protection in vivo [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(5): 343-359. |
[7] | Weiwei Xie, Xuqing Wen, Dedong Zhang, Yuqian Zhang, Zhiqing Zhang, Yiran Jin, Yingfeng Du. Network pharmacology-based strategy to investigate harmacological mechanisms of Isodon serra (Maxim.) Hara for treatment of inflammatory [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 250-263. |
[8] | Yan Shang, Xiaoyuan Lin, Tiantian Zhang, Lihua Xie, Guoheng Hu. Investigation on the mechanism of YQHX against cerebral ischemic injury based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 117-133. |
[9] | Xiaohui Du, Hongyan Yang, Tao Wang, Hongxia Cui, Yu Lin, Hongling Li. Deciphering the latent mechanism of nobiletin in the treatment of metabolic syndrome based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 803-823. |
[10] | Weiwei Jiang, Haiyan Quan, Lu He, Xing Jiang. The diagnostic and prognostic value of CCTs in human hepatocellular carcinoma: a study based on integrated bioinformatics [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(10): 782-797. |
[11] | Taixiang Gao, Feng Zhao, Liyao Shi, Rui Wang. Exploring the mechanism of Fu-Zi Decoction in treatment of chronic heart failure based on network pharmacology and molecular docking technology [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 705-715. |
[12] | Cheng Li, Yuhua Zhu, Xiaomin Sun, Jing Xu, Dan Xiong, Juan Wang, Xinlu Gao, Xulong Chen. The multiple mechanisms of tripterygium wilfordii-induced acute kidney injury based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 556-569. |
[13] | Cong Huang, Carolina Oi Lam Ung, Haishaerjiang Wushouer, Ziyue Xu, Yichen Zhang, Xiaodong Guan, Luwen Shi. The impact of the provincial reimbursement scheme on the use of targeted anticancer medications in Zhejiang, China: a controlled interrupted time-series analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(7): 590-597. |
[14] | Hongzhuang Zhang, Zhiwei Yang, Jianghe Zhang, Yiming Zhang, Shike Hou, Zhenguo Wang, Li Yan, Dongli Fan. Discussion on the mechanism of Salvia miltiorrhiza in treating pathological scars based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 813-821. |
[15] | Chuhang Zhou, Xinping Hu, Qi Liu, Leqi Wang, Yuanhang Zhou, Yao Jin, Yan Liu. Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(9): 626-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||